Crystal structure analyses of cathode material in lithium-ion battery for high-safety

Yukitoshi UEHARA[†] and Hiroshi NAKATSUGAWA

[†]Department of Mechanical and Materials Engineering, Yokohama National University

[†]79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501 Japan [†]TEL: +81-45-339-3858 [†]E-mail: d08gb404@ynu.ac.jp

Abstract The reaction of the combustibility electrolyte gas evaporated by heat and oxygen discharged by pyrolytic reaction of the cathode is a main cause of the unusual heat / fume in lithium-ion battery. In this study, to suppress a quantity of oxygen discharged by thermal decomposition reaction, we made samples which gave $\text{Li}_x\text{CoO}_2(x>1)$ oxygen deficits. $\text{Li}_x\text{CoO}_2(x>1)$ is reported as cathode material which does not cause phase transformations. And we aim at high-safety of cathode material in lithium-ion battery by decreasing a quantity of oxygen and exothermicity that occur at the time of thermolytic reaction.

Experimental The Li_xCoO_2 (x>1) sample sintered respectively in argon, in nitrogen, in the atmosphere and in oxygen by a standard solid reaction method by the use of raw powder Li_2CO_3 and Co_3O_4 , and made the sample.

LiCoO₂ and Li_{1.07}CoO₂ reported that Li/Co = 1.07 showed superior cycling stability to the Li/Co = 1.0 sample was made in this study. It confirmed it by calculating powdery X-ray diffractometric (RT), the lied belt crystal structure analysis, the SEM observation, and the relative density whether to be able to make a target sample. Chemical delithiation of LiCoO2 was carried out by stirring a suspension of 0.6g of LiCoO2 in 30 ml of 0.5 M H₂SO₄ for 4, 16, 20, 24 H.

Results and Discussion Unit cell of all the making samples is rhombohedral crystal from a lied belt analysis result. Moreover, the oxygen share of the sample has decreased because of the thing that lowers the partial pressure of oxygen and sinters. The size of $Li_{1.07}CoO_2$ of the crystal particle is overall larger than that of $LiCoO_2$ in the SEM observation result, and it grows up by excessively adding Li. It is thought that this is because the excessively added lithium ion of the unreaction remains as Li_2O , and it promoted heterogeneous nucleation of the crystal grain.

Therefore, it is thought that the rate characteristic of $LiCoO_2$ is superior to that of $Li_{1.07}CoO_2$. A reactive area of $LiCoO_2$ in cathode is larger than that of $Li_{1.07}CoO_2$ because of the thing with a large surface area.

上原幸俊[†]([†]横浜国立大学大学院工学府 〒240-8501 神奈川県横浜市保土ヶ谷区常盤台 79-5)