Optimization of Ni doping to improve thermoelectric properties of β-Fe_{1-x}Ni_xSi₂ Sopheap Sam¹, Hiroshi Nakatsugawa¹, Yoichi Okamoto² Yokohama National Univ.¹, National Defense Academy² E-mail: sam-sopheap-fh@ynu.jp

Iron silicide compound is an abundant and non-toxic material which has 3 different kinds of phases namely cubic ε -phase, tetragonal α -phase, and orthorhombic β -phase with space group of P213, P4/mmm, and *Cmce*, respectively. β -FeSi₂ is a semiconductor having a narrow band gap of about 0.73 eV which is relevant in high temperature thermoelectric (TE) application due to strong oxidation resistance and good thermal stability; however, the bipolar effect, which deteriorates the Seebeck coefficient (S) as temperature increases, usually occurs in the pristine β -FeSi₂ due to such a small band gap and low carrier concentration (n_H) [1-2]. Komabyashi et al., reported that the TE's parameters of thin film's Fe_{0.94}Ni_{0.06}Si_{2.05} measured at room temperature such as: S, electrical resistivity (ρ), and power factor ($PF = S^2 \rho^{-1}$) was -113 μ V/K, 0.076 Ω .cm, and 17 μ W.m⁻¹. K⁻², respectively [3]. In addition, Tani and Kido reported that the ρ of bulk's β -Fe_{1-x}Ni_xSi₂ increases with the addition of Ni amount owing to the increase in n_H [4], which is also significant to the reduction of bipolar effect. However, the optimum doping level of Ni to enhance the PF and the effect of Ni to thermal conductivity (κ) as well as TE's performance ($ZT = S^2 \rho^{-1} \kappa^{-1} T$) of β -FeSi₂ has not yet been investigated. In the current work, we have studied in detail about the effect and the optimization of Ni dopant on the TE's properties of bulk's β -Fe_{1-x}Ni_xSi₂ prepared by arc-melting techniques. The powder XRD data were measured by CuK α diffractometer (SmartLab, Rigaku). The S and ρ were measured by ResiTest8300 and homemade apparatus, and the κ was measured by power conversion efficiency measurement system (PEM-2, ULVAC-RIKO). As a result, the addition of Ni significantly reduces the bipolar due to the increase in $n_{\rm H}$ and the S of bulk's Ni-doped samples are remarkably more stable than that of non-doped sample above 400 K. We observed that both |S| and ρ remarkably decreases with increasing x, while κ is not significantly varied with x. The highest $PF = 130 \,\mu\text{W.m}^{-1}$. K⁻² is obtained in β -Fe_{0.99}Ni_{0.01}Si₂ at 760K, which is 7 times larger than the thin film sample reported by Komabyashi *et al.*, at room temperature measurement. Therefore, the highest ZT = 0.01 is also obtained in β -Fe_{0.99}Ni_{0.01}Si₂ at 760 K with $n_{\rm H} = 2.3(9) \times 10^{17}$ cm⁻³ due to the stability in |S|, the significant reduction in ρ , and no remarkable effect in κ .

References

- [1] S. J. Clark, H. M. Al-Allak, S. Brand, and R. A. Abram, Physical review B., 58,16 (1998).
- Y. Isoda and H. Udono, Materials, Preparation, and Characterization in Thermoelectrics: CRC Press, pp. 354-378 (2017).
- [3] M. Komabayashi, K. Hijikata, and S. Ido, Japanese Journal of Applied Physics, 30,331-334 (1991).
- [4] J. Tani and H. Kido, Journal of Applied Physics, 84, 1408-1411 (1998).