Thermoelectric properties of β -FeSi₂ with Co and Ni addition

Sopheap Sam¹, Hiroshi Nakatsugawa^{1, *}, Yoichi Okamoto²

¹ Yokohama National Univ., ² National Defense Academy

* E-mail : nakatsugawa-hiroshi-dx@ynu.ac.jp

 β -FeSi₂ crystallized in orthorhombic structure with *Cmce* space group is an abundant and eco-friendly material. In addition, this compound is promising in thermoelectric applications because of its good thermal stability and strong oxidation resistance at high temperatures ¹⁾. However, at high temperatures, the bipolar effect occurs due to a low carrier density ($n_{\rm H}$) with a narrow band gap of about 0.7 eV. The presence of the bipolar effect remarkably deteriorates the Seebeck coefficient (*S*). As a result, the power factor ($PF = S^2 \rho^{-1}$, where *S* is the Seebeck coefficient and ρ is electrical resistivity) also significantly decreases. It was reported that the addition of Co to β -FeSi₂ effectively increases the $n_{\rm H}$ and stabilizes *S* with temperature ²). In addition, the ρ decreases with Co doping, but it is independent of temperature which is probably due to small carrier mobility ($\mu_{\rm H}$). Therefore, in this work, we attempt to improve the $\mu_{\rm H}$ of Co-doped β -FeSi₂ by Ni addition. TE properties of β -Fe_{0.97-x}Co_{0.03}Ni_x Si₂ ($0 \le x \le 0.03$) are reported from 80 to 800 K. The bulk

Fig. 1. Resistivity (ρ) of pure β -FeSi₂ and β -Fe_{0.97-x}Co_{0.03}Ni_x Si₂ ($0 \le x \le 0.03$). The mobility (μ _H) is plotted as the inset.

samples were prepared by arc melting method and followed by heat treatment at 1150 °C for 3 hours and 840 °C for 20 hours. The X-ray diffraction data were measured by a CuK α diffractometer (SmartLab, Rigaku). The elemental analysis was performed by a scanning electron microscope (SU8010, Hitachi High-Technologies) equipped with an EDS XFlash5060FQ detector. The ρ and *S* were measured by using ResiTest8300 (TOYO Co.) and homemade apparatus. The thermal conductivity (κ_{total}) was measured by using a power efficiency measurement (PEM-2, ULVAC, Inc.). Then, the *ZT* can be calculated by *ZT*= S^2T / ($\rho\kappa_{total}$). The result shows that the metallic ε -phase increases with Ni and the solubility of Ni for β -phase is 1%. The presence of the ε -phase decreases the solubility of both Co

and Ni in the β -phase. As Ni is added, the |S| decreases because of the formation of the ε -phase. Fig. 1 shows that the ρ decrease with Ni doping because of the improved $\mu_{\rm H}$ as shown in the inset of Fig. 1. The $\kappa_{\rm total}$ slightly decreases with Ni probably due to the porosity. Consequently, the highest PF = 2400 $\mu {\rm Wm}^{-1}{\rm K}^{-2}$ and ZT = 0.31 is obtained in the 1% Ni-substituted sample.

References

- Y. Isoda and H. Udono, in *Thermoelectrics and its Energy Harvesting*, ed. D. M. Rowe (CRC Press, 2012) 1st ed. pp. 18-1.
- 2) S. Sam, H. Nakatsugawa and Y. Okamoto, Jpn. J. Appl. Phys. 61, 111002 (2022).