

Application of High-Thermoelectric-Power Materials to Self-Cooling Device

H. Nakatsugawa¹, Y. Okamoto², S. Yamaguchi³, T. Kawahara³

¹Yokohama National University,
²National Defence Academy,
³Chubu University

The 3rd International Congress on Ceramics (ICC3) Symposium 9C: Ceramics for Electricity; Direct Conversion Technology between Heat and Electricity, 14-18 November 2010 in Osaka

Introduction

Uses heat flow by both thermal conduction and by Peltier heat for its electric current.

self-cooling device

S.Yamaguchi, ULVAC, <u>52</u>, 14 (2007)

YOKOHAMA National University

Schematic structure of self-cooling device

Results & Discussion

temperature survey 1

water cooled heatsink $(10\pm 2^{\circ}C)$

 $V_{\rm GS} = 10 {
m V}$ $I_{\rm DS} = 40 {
m A}, 50 {
m A}, 60 {
m A}$

aluminaplate

temperature survey 2

self-cooling device 2

Summary

- The Sb doped n-type silicon (111) wafer has been applied to the self-cooling device.
- The self-cooling device using the heat flux both by Peltier effect and by thermal conduction has removed the heat generation on the upper side of the power MOSFET.
- In particular, the heat removal has been enhanced drastically by the increase of the heat flux.

Acknowledgement

supported by the Grants-in-Aid for Scientific Research #22560691 from the Ministry of Education, Culture, Sports and Technology of Japan.

Thank you for your attention.