164 - High Temperature *p-type* and *n-type* Thermoelectric Properties of Pr₁. _xSr_xFeO₃ (0.1≦x≦0.9)

Hiroshi Nakatsugawa^{1,*}, Itsuki Ishikawa¹, Miwa Saito², and Yoichi Okamoto³ ¹Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan ²Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan ³National Defense Academy, 1-10-20 Hashirimizu, Yokosuka 239-8686, Japan

> +81-45-339-3854 naka@ynu.ac.jp

Abstract

Polycrystalline samples of $Pr_{1-x}Sr_xFeO_3$ (0.1 $\leq x \leq 0.9$) were synthesized using a conventional solidstate reaction method. We investigated crystal structure and bond valence sum at room temperature, and magnetic susceptibility, electrical resistivity, Seebeck coefficient, thermal conductivity, and ZT as a function of temperature. The perovskite structures changed from orthorhombic *Pbnm* phases to rhombohedral *R-3c* ones at x = 0.4. The temperature dependence of inverse magnetic susceptibilities showed that the spin state of Fe ions consists of intermediate spin (IS) $\operatorname{Fe}^{3+}(t_{2g}^{4}e_{g}^{1})$, low spin (LS) $\operatorname{Fe}^{3+}(t_{2g}^{5})$, and LS $\operatorname{Fe}^{4+}(t_{2g}^{4})$ ions below x = 0.4. On the other hand, the spin state of Fe ions consists of IS Fe³⁺ $(t_{2g}^4 e_g^1)$ and LS Fe⁴⁺ (t_{2g}^4) ions above x = 0.5. This means that the carrier type for $Pr_{1-x}Sr_xFeO_3$ changes from t_{2g} hole like to e_g electron like behavior. In fact, the samples for $x \le 0.3$ show a large positive Seebeck coefficient over the whole temperature range although Seebeck coefficient of the samples for $0.4 \le x \le 0.5$ decreases with increasing temperature and that of the samples for $x \ge 0.7$ show a negative Seebeck coefficient over the whole temperature range. In particular, the samples for x = 0.1 and 0.9 exhibited *p*-type and *n*type thermoelectric properties with relatively high Seebeck coefficient, moderate electrical resistivity and low thermal conductivity, respectively. For example, the sample with x = 0.1 showed a power factor of 20μ Wm⁻¹K⁻² at 850K leading to ZT of about 0.024 at this temperature, indicating that perovskite-type Fe oxides are one of the good candidate for high temperature thermoelectric materials.