

Crystal structure and magnetism in $Nd_{1-x}Sr_{x}FeO_{3}$ (0.1 $\leq x \leq 0.9$)

H.Nakatsugawa¹, Y.Kamatani¹, C.H.Hervoches² ¹Yokohama National University, Japan, ²Nuclear Physics Institute, Rež, Czech Republic

Introduction, the samples

Rare-earth orthoferrites $RFeO_3$ (R = La, Nd, Dy,...) are of particular interest due to their potential multiferroicity, magnetoelectric effects, and other functional properties.

In this study, several samples in the $Nd_{1-x}Sr_{x}FeO_{3}$ series $(0.1 \le x \le 0.9)$ have been prepared, x - ray diffraction confirmed the obtention of single phase with a typical ABO3 perovskite structure.

Magnetization measurements from 5K to 700K show weak antiferromagnetic behavior and paramagnetism

Neutron diffraction

Powder neutron diffraction (A=1.875 Å from a Si(311) monochromator) measurements were performed for all $Nd_{1-x}Sr_{x}FeO_{3}$ (0.1 $\leq x \leq 0.9$) samples at room temperature.

Results confirmed that the FeO_6 octahedron distortion is relaxed as x increases and approaches the crystal structure of the pseudo-cubic.

Neutron diffraction for all samples could be refined in orthorhombic space group Pnma but, for $0.1 \le x \le 0.2$, the quality is improved with space group P2₁/m, as seen with the fitting of 202 (and 20-2) reflections.

The following phase sequence is proposed:

- $0.1 \le x \le 0.2$ monoclinic P2₁/m
- $0.3 \leq x \leq 0.9$ orthorhombic Pnma

following the typical Curie-Weiss law above 600K.

> Inverse magnetic susceptibility vs T for $Nd_{1-x}Sr_{x}FeO_{3}$ (0.1 $\leq x \leq 0.9$)

In all samples, it is expected that Fe³⁺ is in low spin (LS) Fe³⁺ (t_{2g}^{5}) ; s = 0.5 or intermediate spin (IS) Fe³⁺ $(t_{2g}^{4}e_{g}^{1})$; s = 1.5 and Fe⁴⁺ is in a low spin state (LS) Fe⁴⁺ (t_{2g}^{4}) ; s = 1.0.

Thus, assuming that the mixed valence state of Fe³⁺ and Fe⁴⁺ is (LS Fe^{3+}_{y} IS $Fe^{3+}_{1-y})_{1-x}$ LS Fe^{4+}_{x} (0.1 $\le x \le 0.9$), the ratio of Fe^{4+} increases and that of Fe^{3+} decreases with increasing x.

In particular, the ratio of IS Fe³⁺, which accounts for the largest proportion at x = 0.1 and 0.2, gradually decreases with increasing x. This decrease in the ratio of IS Fe³⁺ to the increase in x is expected to show a large correlation with the relaxation of the FeO_6 octahedron distortion.

The instrument: MEREDIT (MEdium REsolution neutron powder DIffracTometer)

ncrete and lead shieldii door moving on air pads

P2₁/m: 20-2, 202, 040 Pnma: 202 and 040

Crystal and magnetic structure change with x

x = 0.5, Pnma, a = 5.456, b = 7.708, c = 5.489,

magnetic SG at RT: Pnma, Mx = 1.5

Drawing of the crystal structure showing tilting of the FeO_6 octahedron: in the (101) plane and about the b-axis,

Magnetic structure

Sample environment

- Variable temperature between 10 and 1300K with close cycle cryostat and vacuum or light furnace.
- Carousel for automatic sample exchange at RT.
- Euler goniometer for texture measurements.
- Deformation rig for mechanical testing.

Users open access portal: <u>http://canam.ujf.cas.cz</u>

<u>Conclusions:</u>

PND data of the Nd_{1-x}Sr_xFeO₃ samples were collected at RT for the whole series ($0.1 \le x \le 0.9$).

- The samples present antiferromagnetic ordering
- At room temperature, the magnetic spins order in the shorter axis, i.e.:
 - for $0.1 \le x \le 0.3$, the magnetic spins order in the c-axis direction (SG P2₁/m or Pn'ma')
 - for $0.4 \le x \le 0.6$, the magnetic spins order in the a-axis direction (SG Pnma)
- At 10K, for $Nd_{0.9}Sr_{0.1}FeO_3$ (x = 0.1), the magnetic spins order in the b-axis direction (SG : $P2_1'/m'$)

