Effect of high temperature compression deformation on P067 the evolution of microstructure and texture of sintered Ca₃Co₄O₉

Yuki FURUYA¹, Hiroshi NAKATSUGAWA² and Hiroshi FUKUTOMI² Graduate Student of Yokohama National University¹

Division of Material Science and Chemical Engineering, Yokohama National University²

Abstract

Increase in electrical conductivity is a key issue for the practical application of Ca₃Co₄O₉. The **development of (001) texture** is experimentally examined as a solution for this purpose. It is found that high temperature compression deformation is effective for the development of the texture, resulting in the decrease in electrical resistivity.

Experimental

1. Specimen preparation

Powder compact with relative density of 53% Specimen dimension: ϕ 14.0mm x 13.0mm

2. Uniaxial compression

1153K and 1193K, target true strain -1.5

3. Texture measurements

Schulz reflection method using CuK α

4. Measurements of electrical resistivity Four-probe method, 573K-1073K, parallel to the compression plane

Results and discussion (001)(compression plane) texture develops with the change in grain shape by the high temperature deformation. The highest area fraction of crystal grains within 10° from (001) Present result Single Crystal orientation is 61% Random 0.8 7 at present. Merit, M. Shikano. The value of figure 0.6 R. Funahashi ď of merit for Figure (0.4 textured Ca₃Co₄O₉ 0.2 is given by Tani, HJtahara the blue line in Fig. 1. 200 400 600 800 1000 Further development Temperature, T/K of (001) texture is Fig. 1 ZT-T relationship.

promising for the practical application of this material. Fig. 1 ZT-T relationship. Seebeck coefficient and thermal conductivity of single crystal¹ are used for the calculation.