The 41st International and 7th Asian Conference on Thermoelectrics (ICT/ACT 2025) ## Thermoelectric properties of $Sm_{1-x}Ca_xFeO_{3-\delta}(0.1 \le x \le 0.8)$ and $Ho_{1-x}Ca_xFeO_{3-\delta}(0.1 \le x \le 0.9)$ perovskite-type oxides Hiroshi Nakatsugawa^{1*}, Muhammad Ibrar¹, Fumiya Konishi¹, Koichi Kitahara² ¹Yokohama Natl. Univ., 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 Japan ²National Defense Academy, 1-10-20 Hashirimizu, Yokosuka 239-8686 Japan *E-mail: nakatsugawa-hiroshi-dx@ynu.ac.jp Recently, we have reported on crystal structure, magnetism, and thermoelectric properties of $Nd_{1-x}Sr_xFeO_{3-\delta}$ (0.1 $\le x \le 0.9$) [1,2]. These polycrystalline samples exhibit a single-phase perovskite-type crystal structure (space group: Pnma). Assuming that the Fe site is in the mixed-valence stat, the spin state of Fe changes from a low-spin (LS) or intermediate-spin (IS) Fe³⁺ ions dominant state at $x \le 0.5$ to a LS Fe⁴⁺ ions dominant state at $x \ge 0.6$. Using the high-temperature limit equation which is an extension of the Heikes formula for Seebeck coefficient for iron oxides, the thermoelectric characteristics tend to be p-type when Fe³⁺ and Fe⁴⁺ ions are predominantly LS at $x \le 0.5$, whereas they tend to be n-type when Fe³⁺ and Fe⁴⁺ ions are predominantly IS and LS at $x \ge 0.6$, respectively. In fact, at temperatures less than 500K, these samples show a p-type Seebeck coefficient for $0.1 \le x \le 0.5$ and an n-type Seebeck coefficient for $0.6 \le x \le 0.9$. However, for $0.6 \le x \le 0.9$, a part of Fe⁴⁺ ions is reduced to Fe³⁺ ions because of an oxygen deficiency in the 500 - 600K temperature range, whereas compositions with high n-type ZT could not be identified. Polycrystalline $Sm_{1-x}Ca_xFeO_{3-\delta}$ ($0.1 \le x \le 0.8$) and $Ho_{1-x}Ca_xFeO_{3-\delta}$ ($0.1 \le x \le 0.9$) samples were synthesized using a general solid-state reaction method. The oxygen deficiency δ was determined from the average value obtained from three iodometric titrations. All the samples were subjected to powder X-ray diffraction measurements by using SmartLab (Rigaku), and the crystal structures were identified using Rietveld analysis by the RIETAN-FP program. ResiTest8300 (TOYO) was used for electrical resistivity and Seebeck coefficient measurements from 80 to 395 K, and a home-made apparatus was used for measurements from 395 to 600 K. Thermal conductivity measurements from 300 to 800 K were used by PEM-2 (ADVANCE RIKO), and ZT up to 600 K was evaluated. From crystal structure analysis, all samples exhibit a single-phase perovskite-type crystal structure (space group: Pnma). As with $Nd_{1-x}Sr_xFeO_{3-\delta}$ for $x \ge 0.6$ [1,2], it was found that a part of Fe^{4+} ions in $Sm_{1-x}Ca_xFeO_{3-\delta}$ for $x \ge 0.6$ is reduced to Fe^{3+} ions because of an oxygen deficiency in the 500-600K temperature range, and high n-type thermoelectric properties could not be identified. On the other hand, $Ho_{1-x}Ca_xFeO_{3-\delta}(0.1 \le x \le 0.9)$ samples show a magnetic susceptibility about 200 times higher than that of $Sm_{1-x}Ca_xFeO_{3-\delta}(0.1 \le x \le 0.9)$ at 5 K. This suggests that all of the Fe ions in $Ho_{1-x}Ca_xFeO_{3-\delta}(0.1 \le x \le 0.9)$ samples are in the high-spin (HS) state, i.e., $HS Fe^{3+}_{1-x} HS Fe^{4+}_x$, rather than (LS Fe^{3+} , $IS Fe^{3+}_{1-x} LS Fe^{4+}_x$. In fact, the temperature dependence of the reciprocal magnetic susceptibility above 700 K confirmed that the Fe in $Ho_{1-x}Ca_xFeO_{3-\delta}(0.1 \le x \le 0.9)$ samples is in the HS state. Therefore, $Ho_{1-x}Ca_xFeO_{3-\delta}(0.1 \le x \le 0.9)$ samples are expected to exhibit both high p-type and n-type thermoelectric properties at high temperature. ## References - [1] Nakatsugawa, H., Kamatani, Y., Okamoto, Y., Hervoches, C.H., Jpn. J. Appl. Phys. 2023, 62, 043001. - [2] Nakatsugawa, H., Kamatani, Y., Okamoto, Y., Hervoches, C.H., Jpn. J. Appl. Phys. 2023, 62, 069401.